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Abstract

Chotikapanich and Griffiths (2002) introduced the Dirichlet distribution to the es-

timation of Lorenz curves. This distribution naturally accommodates the proportional

nature of income share data and the dependence structure between the shares. Chotika-

panich and Griffiths (2002) fit a family of five Lorenz curves to one year of Swedish

and Brazilian income share data using unconstrained maximum likelihood and uncon-

strained non-linear least squares. We attempt to replicate the authors’ results and

extend their analyses using both constrained estimation techniques and five additional

years of data. We successfully replicate a majority of the authors’ results and find that

some of their main qualitative conclusions also hold using our constrained estimators

and additional data.
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Introduction

The Lorenz curve is a commonly used tool to illustrate income distributions and income

inequality. It is constructed by relating ordered cumulative proportions of income to or-

dered cumulative population shares. The curve is then used to estimate income inequality

measures, such as the Gini coefficient or Atkinson’s inequality measure.

Unfortunately, estimates of inequality from Lorenz curves can depend crucially on distri-

butional assumptions, functional form assumptions, and estimation methodologies (Cheong,

2002; Chotikapanich and Griffiths, 2002, 2005; and Abdalla and Hassan, 2004). There-

fore, the literature proposes different functional forms and re-parameterizations for both the

Lorenz curve and income distributions.1 Estimation is commonly based on least squares

techniques, with more recent studies using Bayesian and maximum likelihood estimation.2

We have three main objectives in this paper. For our first objective, we attempt a nar-

row replication of Chotikapanich and Griffiths (2002), hereafter CG, who propose using a

Dirichlet distribution to model cumulative income share data. The Dirichlet distribution

naturally accommodates the proportional nature and dependence structure of income share

data, which are characteristics of income share data that often lack recognition (Chotika-

panich and Griffiths, 2002). CG estimate five Lorenz curves using both maximum likelihood

(ML) and non-linear least squares (NL) on one year of Brazilian and Swedish data, obtain-

ing implied Gini coefficients. CG have three main findings: (1) the point estimates of the

parameters and of the Gini coefficients are generally insensitive to the choice of Lorenz curve

specification and estimator, (2) the standard errors are sensitive to the specification and

estimator, and (3) ML under the Dirichlet distributional assumption performs better than

NL for all Lorenz curve specifications.

We replicate a majority of CG’s three main findings. For less parameterized Lorenz

curves, our point estimates and standard errors match CG. We experience considerable

instability in estimating the more parameterized Lorenz curves, consistent with CG. Our

successful narrow replication contributes to the current push for replication and robustness
1For example, Kakwani (1980), Rasche et al. (1980), Ortega et al. (1991), Chotikapanich (1993), Sarabia

et al. (1999, 2001, 2005), Rohde (2009), Helene (2010), and Wang and Smyth (2015).
2See Chotikapanich and Griffiths (2002, 2008), Hasegawa and Kozumi (2003).
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in economics research (Chang and Li, 2015; Welch, 2015; Zimmermann, 2015).

Our second objective is to extend CG by using constrained estimators. We apply con-

strained maximum likelihood (CML) and constrained non-linear least squares (CNL) to the

same functional forms and data as CG. We use constrained estimators because the param-

eters from the Lorenz curve specifications in CG should be constrained to ensure that the

curves are invariant to increasing convex exponential and power transformations (Sarabia

et al. (1999)). Although these restrictions are mentioned in CG, some of CG’s estimates vio-

late the constraints. We find that some parameter estimates differ between constrained and

unconstrained estimators, but the implied Gini coefficients are similar between constrained

and unconstrained estimators.

Our third objective is to fit the various Lorenz curve specifications with both constrained

and unconstrained estimators on five additional years of Swedish and Brazilian income dis-

tribution data from the World Bank: data not used by CG. We find that a few of the main

conclusions from CG also hold using the constrained estimators and these additional data.

Similar to Abdalla and Hassan (2004), who apply the methodologies from CG to data from

the Abu Dhabi Emirate and their own Lorenz curve form, we find that Gini coefficient point

estimates are robust to different functional forms and estimation methods when applied to

additional data.

Narrow Replication

The data are the cumulative proportions of income (η1, η2, ..., ηM with ηM = 1) and

corresponding cumulative population shares (π1, π2, ..., πM with πM = 1).3 Let qi = ηi −

ηi−1 be the income shares. CG assume that (q1, . . . , qM) has a Dirichlet distribution with

parameters (α1, . . . , αM), where αi = λ[L(πi; β) − L(πi−1; β)]. L(·) is the Lorenz curve

specification with an associated vector of unknown parameters β, and λ > 0 is an unknown

scalar parameter from the Dirichlet distribution.
3For this paper, we conduct the replications without assistance from the authors and without their code,

using data from the original source (Jain, 1975). We use Matlab R2013a and Stata 13MP on the Windows
7 Enterprise (64-bit) and OS X Version 10.9.5 operating systems respectively.
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CG apply five Lorenz curve specifications to one year of Brazilian and Swedish data:

L1(πi; k) = ekπ − 1
ek − 1 , k > 0 (1)

L2(πi;α, δ) = πα[1− (1− π)δ], α ≥ 0, 0 < δ ≤ 1 (2)

L3(πi; δ, γ) = [1− (1− π)δ]γ, γ ≥ 1, 0 < δ ≤ 1 (3)

L4(πi;α, δ, γ) = πα[1− (1− π)δ]γ, α ≥ 0, γ ≥ 1, 0 < δ ≤ 1 (4)

L5(πi; a, d, b) = π − aπd(1− π)b. a > 0, 0 < d ≤ 1, 0 < b ≤ 1 (5)

Each specification is then estimated with ML based on the Dirichlet distributional assump-

tion or with NL without the distributional assumption. Functions L2 and L3 are nested in

function L4 when γ = 1 and α = 0. L5 is the “beta” function, see Kakwani (1980), and can

yield L2 when a and d are 1 in L5 and α = 1 in L2.

The log-likelihood of the j-th Lorenz curve specification and the Dirichlet distribution is

log[f(q|θ)] = log Γ(λ) +
M∑
i=1

(λ[Lj(πi; β)− Lj(πi−1; β)]− 1)× log qi (6)

−
M∑
i=1

log Γ(λ[Lj(πi; β)− Lj(πi−1; β)]).

ML standard errors are derived from the negative inverse of the numeric Hessian matrix

evaluated at the maximum. We use the Matlab function fminunc to perform the optimiza-

tions.

The NL objective function is

R =
M∑
i=1

(ηi − Lj(πi; β))2. (7)

We use the Matlab function lsqcurvefit and the Stata command nl for the optimizations. For

NL, CG suggest using Newey and West (1987) standard errors.4

Tables 1 and 2 show our narrow replication results. For Lorenz curves L1 to L3 and
4We implement nl in Stata with different lag values for the Newey-West standard errors and find that a

lag of 2 matches the standard errors reported by CG. These are the standard errors we report. We use the
Stata option vce(hac nwest 2) in the nl command.
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for both countries, our ML point estimates and standard errors more or less match those

from CG. Our ML estimation for L4 is unstable, with more stable estimation using Brazilian

data than Swedish data, consistent with CG. However, the Swedish ML point estimates for

α fluctuate around values that are often greater than CG’s estimates. When we perform

ML with random starting values on Swedish data, the point estimates are similar to CG’s

but the standard errors are unstable.5 This instability may indicate that the area around

the maximum is flat, yielding point estimates and variances that are not unique (Gill and

King, 2003). In addition, the numeric variance-covariance matrix evaluated at the converged

values is not positive definite for over 50% of the random starting values. As a result, we do

not report ML standard errors for L4 with Swedish data. For L4 with Brazilian data, our

point estimates and standard errors more or less match those from CG.

We are unable to replicate CG’s ML results for L5 for both countries, despite attempting

estimation using a grid of starting values. As noted in Ortega et al. (1991) and Sarabia et al.

(1999), L5 can result in a negative income share ηi for a population share πi, leading to the

difference L5(πi; β)−L5(πi−1; β) being negative and the term log Γ(λ[L5(πi; β)−L5(πi−1; β)])

from (6) being computationally infeasible.

We use NL for each Lorenz curve, initialized over a grid of starting values that spans the

support of the parameters. We find that all Lorenz curve specifications except L1 display

some instability.6 Instability is most frequent for L4 and L5. However, the parameter

estimates that minimize the NL objective function and the corresponding standard errors

are equivalent to CG’s estimates.

For both ML and NL, we also attempt to replicate the Gini coefficientG = 1−2
∫ 1

0 Lj(π; β)

dπ, which is an income inequality measure. Following CG, we obtain point estimates of G by

replacing β with the ML or NL β̂s for each Lorenz curve specification. With the exception of

L1, we successfully replicate the Gini point estimates and standard errors for all estimation

techniques and Lorenz curve specifications. Our initial inability to replicate the ML standard

errors for the L1 Gini coefficients led us to analytically verify the formula for the variance of

the Gini coefficient, var(Ĝ). We find a typo in CG’s L1 formula for var(Ĝ) but are able to
5We use 2000 sets of random starting values from a standard normal distribution.
6A majority of the parameter estimates are similar. However, some initial values lead to NL point

estimates with larger residual sum of squares, and in some cases infinite Gini coefficients.
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replicate the ML standard errors for the Gini coefficient with our corrected formula.7 Also,

we discover a minor computational issue in the calculation of the NL standard errors for L1

by CG.8 We report the corrected quantities in our tables.

Similar to CG, we find that the Gini point estimates are insensitive to the choice of Lorenz

curve specification and estimator, although L1 fitted with Brazilian data is an exception.

Given our inability to estimate L5 using ML and the non-positive definite numeric Hessian

for L4 using Swedish data, we do not report an ML Gini coefficient for L5 or standard errors

of the Gini coefficient for both L4 and L5.

We also successfully replicate the information inaccuracy measures suggested by Theil

(1967) and the likelihood ratio test (LRT) results except for L5 vs. L2 (with α=1) for Brazil.9

We obtained 51.355 as the test statistic compared to 31.355 from CG. Both likelihood ratio

statistics, however, lead to the same conclusion that the functional form L2, with α = 1,

is rejected relative to L5. The L5 LRT and information inaccuracy measure for L5 are

calculated using CG’s reported point estimates.

Scientific Replication: Constrained Optimization

Although the parameters for each Lorenz curve specification in (1) to (5) should be

constrained to ensure that the Lorenz curves are invariant to increasing convex exponential

and power transformations, we believe that CG did not enforce the constraints as some of

their estimates violate the ranges. Therefore, we reestimate the models with the constraints

imposed.10 Our results are detailed in Tables 1 and 2.

7CG report var(Ĝ) =
[

2(ek̂(e2−k̂2−2)+1)
(k̂(ek̂−1))2

]2
var(k̂) but we analytically find var(Ĝ) =[

2(ek̂(ek̂−k̂2−2)+1)
(k̂(ek̂−1))2

]2
var(k̂).

8We find that the CG standard errors for the L1 NL Gini coefficient are calculated as var(Ĝ) = ∂G
∂β var(k̂)

when the correct formula is var(Ĝ) = ∂G
∂β′ var(k̂)∂G∂β . We verify this using CG’s reported Brazilian values for

SE(Ĝ) and SE(k̂), .1647 and .6726, in the formula of var(Ĝ) corrected for the typo detailed in footnote 7:
.16472 = ∂G

∂β × .67262 × ∂G
∂β , which implies [∂G∂β ]2 = .0600 and ∂G

∂β = .2449, however ∂G
∂β evaluated at k̂ =

.0600. Therefore the variance of Ĝ should be var(Ĝ) = .0600× .67422 × .0600 = .0016 and SE(Ĝ) = .0403.
A similar computational error occurs for Swedish data.

9The Theil (1967) information inaccuracy measure, I =
∑M
i=1 qilog(

qi

q̂i
), compares actual income shares,

qi, to predicted income shares, q̂i. Smaller values of I indicate a better fit.
10We use the Matlab functions fmincon and lsqcurvefit. In unreported results we also attempt to use the

Matlab function patternsearch to apply ML and CML. Patternsearch yields parameter estimates that are
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Point estimates for L1 to L3 are identical for constrained and unconstrained estimation.

For L4 with Swedish data, the CNL estimates deviate the most from the NL estimates. For

example, the CNL estimate for α is close to 0 while the NL estimate is −0.7549. For L4 with

Brazilian data, the CNL estimates are close to the NL estimates. In terms of CML results

for L4, the constrained estimates and standard errors match the unconstrained quantities.

Though we were unable to replicate unconstrained ML point estimates for L5, with parameter

constraints imposed the CML point estimates are close to the unconstrained estimates from

CG; we were unable to generate standard error estimates as the numeric hessians were quite

unstable across different sets of starting values. The CNL point estimates for L5 are either

identical to or very close to the NL quantities.

Overall, we find that the CML and CNL estimates of the model parameters can differ

from their ML and NL counterparts. However, the implied Gini coefficients are similar even

when the unconstrained and constrained parameter estimates differ.

Scientific Replication: Extension to World Bank Data

We further extend CG using data from the World Bank Poverty and Equity Database

(World Bank, 2015b).11 We construct a dataset of seven quantiles of cumulative income

shares for Brazil in 1987, 1992, 1995, 2001 and 2005 and for the equivalent years for Sweden,

with 2001 replaced by 2000.12

Tables 3 and 4 show our results using these World Bank data. Unconstrained and con-

strained estimation applied to World Bank data yield qualitative conclusions similar to those

reported by CG, who use data from Jain (1975). With the exception of L4, the point es-

timates of the parameters for all Lorenz curve specifications are similar across estimation

techniques, but there are differences in the standard errors. ML and NL point estimates

for L4 differ for all years of Brazilian and Swedish World Bank data. Similar to our narrow

either identical to fmincon or imply a smaller log-likelihood; it also tends to be less stable than fmincon.
11We have agreed to the terms of use as described at http://go.worldbank.org/OJC02YMLA0.
12World Bank Poverty and Equity Database variables used include income share held by lowest 10%,

lowest 20%, second 20%, third 20%, fourth 20%, highest 20%, and highest 10%. Swedish data for 2001
and Brazilian data for 2000 are unavailable. At the time of submission, Swedish data for these years and
variables were no longer available in the World Bank DataBank, but they are available from the authors
upon request.
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replication, we experience the same computational instability with unconstrained ML for L4

and computational infeasibility for L5 with World Bank data. We employ methods from our

narrow replication and constrained estimation to obtain point estimates for L4 and L5.

We also find that, for a given year, Gini coefficients are similar across Lorenz curve

specifications and estimators, with the exception of L1 with Brazilian data. Although some

unconstrained parameter estimates violate the restricted ranges and are different from the

constrained estimates, the estimates still yield similar point estimates of the Gini coeffi-

cients. For Brazil, ML estimation of L1 results in Gini coefficients that are lower than other

functional forms, and NL estimation results in higher Gini coefficients. In addition, the

point estimates of the Gini coefficients obtained in our analysis are similar to those offi-

cially reported by the World Bank (see Table 5). World Bank Gini coefficients are based

on the generalized quadratic and beta parameterizations of the Lorenz curves, suggested by

Villasenor and Arnold (1989) and Kakwani (1980).13

Table 6 compares the fit using the Theil (1967) information inaccuracy measure. Similar

to CG, we find ML estimation with Swedish data provides a better fit than NL for all Lorenz

curve specifications, with the largest differences observed for L4 and L5. CG’s conclusion is

also consistent for the Swedish World Bank data with the exception of 2001 and 2005 for L1

and 2005 for L4. For Brazil, CG find that ML provides a better fit than NL for L2, L3, and

L4, a worse fit for L1 and an equivalent fit for L5. We find that NL is a better fit in 4 of the

5 years of World Bank data for L1 and in all years for L4, but ML is a better fit for all years

with functions L2, L3 and L5. For both L4 fit to Swedish data and L5 fit to Brazilian data,

CNL has a smaller information measure than NL, suggesting that CNL provides a better fit

relative to NL.14 A closer examination shows that for both Brazilian and Swedish data NL

overpredicts q1 and underpredicts q2 and q3, relative to qi, by a larger margin than CNL.
13Data are from nationally representative household surveys conducted by national statistical offices or by

private agencies under the supervision of government or international agencies. Parametric Lorenz curves
are used with groups distributional data when they are expected to provide close estimates to the micro
data. If estimation using parametric Lorenz curves is unlikely to work well, estimation is done directly from
micro data obtained from nationally representative household surveys (World Bank, 2015a).

14The NL objective function, however, is lower for unconstrained NL.
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Conclusion

Our narrow replication of CG verifies a majority of their results. However, we discover a

few minor computational and presentational issues in CG. These issues do not affect CG’s

qualitative conclusions. Our scientific replication extends the analysis from CG to con-

strained estimators and additional data. We conclude that some of the qualitative results

from CG also hold with constrained estimators and additional data. Some of our constrained

parameter estimates are different than CG’s corresponding unconstrained estimates. How-

ever, the Gini coefficient estimates from both sets of estimates are similar.

Although we have explored different functional forms and estimators for modeling Lorenz

curves, it is difficult for us to make a sweeping recommendation as to which estimator and

functional form that researchers should use. However, assuming you only care about the

Gini coefficient, and not the fit of actual income shares, then we feel the parsimonious L1 is

the best option. L1’s implied Gini coefficient is relatively, though not completely, invariant

to estimator choice and also is stable across initialized starting values.
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Tables

Table 1: Sweden estimates using data from Jain (1975)a

Chotikapanich & Griffiths Our Unconstrained & Constrained Results

α δ γ Gini α δ γ Gini
L2 NL .5954 .6352 .3880 .5954 .6352 .3880

(.0136) (.0052) (.0013) (.0136) (.0052) (.0013)
ML .6068 .6412 .3872 .6068 .6412 .3872

(.0206) (.0085) (.0041) (.0206) (.0084) (.0040)
L3 NL .7269 1.5602 .3871 .7269 1.5602 .3871

(.0032) (.0076) (.0007) (.0032) (.0076) (.0007)
ML .7335 1.5767 .3877 .7335 1.5767 .3877

(.0072) (.0176) (.0036) (.0081) (.0190) (.0038)
L4 CNL – – – – .0000 .7269 1.5602 .3871

NL -.7552 .7931 2.2893 .3864 -.7549 .7931 2.2890 .3865
(.5638) (.0366) (.5458) (.0000) (.5643) (.0366) (.5462) (.0006)

CML – – – – .0050 .7330 1.5720 .3877
ML .0048 .7330 1.5721 .3876 .0045 .7330 1.5724 .3877

(.6612) (.0756) (.6369) (.0036) – – – –
L1 k k

NL 2.5029 .3792 2.5029 .3792
(.0826) (.0292) (.0825) (.0103)

ML 2.5313 .3828 2.5313 .3828
(.1831) (.0228) (.1830) (.0228)

L5 a d b a d b
NL .7664 .9397 .5929 .3876 .7664 .9397 .5929 .3876

(.0148) (.0138) (.0108) (.0010) (.0148) (.0138) (.0108) (.0011)
CML – – – – .7492 .9200 .5862 .3870

– – – – – – – –
ML .7492 .9199 .5862 .3870 – – – –

(.0143) (.0093) (.0109) (.0031) – – – –
a ‘ML’: maximum likelihood. ‘NL’: non-linear least squares. ‘CML’ : constrained maximum like-
lihood. ‘CNL’: constrained non-linear least squares. We report constrained estimates only when
they differ from the unconstrained estimates. ‘–’ represents estimates we are unable to obtain.
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Table 2: Brazil estimates using data from Jain (1975)b

Chotikapanich & Griffiths Our Unconstrained & Constrained Results

α δ γ Gini α δ γ Gini
L2 NL .5727 .2876 .6361 .5727 .2876 .6361

(.0223) (.0019) (.0012) (.0223) (.0019) (.0012)
ML .5270 .2857 .6326 .5270 .2857 .6326

(.0383) (.0053) (.0052) (.0382) (.0053) (.0052)
L3 NL .3782 1.4357 .6328 .3782 1.4357 .6328

(.0038) (.0127) (.0010) (.0038) (.0127) (.0010)
ML .3721 1.4160 .6325 .3721 1.4160 .6325

(.0068) (.0225) (.0040) (.0069) (.0228) (.0039)
L4 CNL – – – – .2170 .3467 1.2674 .6340

NL .2169 .3467 1.2674 .6339 .2169 .3467 1.2674 .6340
(.1950) (.0289) (.1473) (.0013) (.1954) (.0289) (.1474) (.0013)

ML .0262 .3683 1.3950 .6325 .0262 .3683 1.3950 .6326
(.2148) (.0318) (.1734) (.0039) (.2229) (.0330) (.1800) (.0039)
k k

L1 NL 5.3685 .6368 5.3685 .6368
(.6726) (.1647) (.6726) (.0403)

ML 3.8438 .5234 3.8438 .5234
(.8237) (.0747) (.8237) (.0747)
a d b a d b

L5 CNL – – – – .9150 1.0000 .2698 .6349
NL .9151 1.0001 .2698 .6349 .9151 1.0001 .2698 .6349

(.0030) (.0024) (.0016) (.0003) (.0030) (.0024) (.0016) (.0003)
CML – – – – .9131 .9991 .2685 .6350

– – – – – – – –
ML .9131 .9990 .2685 .6349 – – – –

(.0044) (.0024) (.0021) (.0013) – – – –
b ‘ML’: maximum likelihood. ‘NL’: non-linear least squares. ‘CML’ : constrained maximum like-
lihood. ‘CNL’: constrained non-linear least squares. We report constrained estimates only when
they differ from the unconstrained estimates. ‘–’ represents estimates we are unable to obtain.
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Table 3: Sweden Estimates using World Bank Datad

Continued from previous page
2001 2005

α δ γ Gini α δ γ Gini
L2 NL .2949 .7021 .2743 .2802 .7183 .2605

(.0055) (.0024) (.0007) (.0055) (.0026) (.0007)
ML .2962 .7035 .2739 .2807 .7196 .2599

(.0084) (.0044) (.0022) (.0074) (.0040) (.0020)
L3 NL .7495 1.2831 .2741 .7623 1.2702 .2603

(.0017) (.0033) (.0004) (.0019) (.0034) (.0004)
ML .7511 1.2859 .2741 .7635 1.2720 .2602

(.0041) (.0073) (.0020) (.0034) (.0058) (.0016)
L4 CNL .0000 .7495 1.2830 .2741 .0000 .7623 1.2702 .2603

NL -.2552 .7798 1.5305 .2739 -.4223 .8075 1.6819 .2602
(.2821) (.0287) (.2730) (.0004) (.3089) (.0263) (.3015) (.0003)

CML .0000 .7511 1.2859 .2742 .0000 .7635 1.2720 .2602
ML .0000 .7511 1.2859 .2742 .0000 .7635 1.2720 .2602

– (.0041) (.0073) – – (.0034) (.0058) –
k k

L1 NL 1.7263 .2744 1.6295 .2603
(.0892) (.0129) (.0801) (.0118)

ML 1.6940 .2697 1.6043 .2566
(.1681) (.0244) (.1539) (.0227)
a d b a d b

L5 NL .5175 .8865 .5844 .2745 .4965 .8833 .5972 .2607
(.0094) (.0118) (.0095) (.0005) (.0089) (.0113) (.0096) (.0004)

CML .5121 .8771 .5815 .2743 .4928 .8761 .5959 .2605
d We use income data from the World Bank Poverty and Equity Database
(http://data.worldbank.org/data-catalog/poverty-and-equity-database). The variables include
income share held by lowest 10%, lowest 20%, second 20%, third 20%, fourth 20%, highest 20%,
and highest 10%. ‘ML’: maximum likelihood. ‘NL’: non-linear least squares. ‘CML’ : constrained
maximum likelihood. ‘CNL’: constrained non-linear least squares. We report constrained estimates
only when they differ from the unconstrained estimates. ‘–’ represents estimates we are unable to
obtain.
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Table 4: Brazil Estimates using World Bank Dataf

Continued from previous page
2000 2005

α δ γ Gini α δ γ Gini
L2 NL .8259 .3668 .5985 .7159 .3849 .5708

(.0422) (.0053) (.0023) (.0306) (.0043) (.0019)
ML .7868 .3664 .5941 .6855 .3845 .5670

(.0521) (.0088) (.0066) (.0400) (.0075) (.0057)
L3 NL .4942 1.6662 .5956 .5004 1.5861 .5683

(.0035) (.0124) (.0007) (.0019) (.0060) (.0005)
ML .4940 1.6622 .5947 .5000 1.5826 .5677

(.0047) (.0157) (.0023) (.0030) (.0095) (.0015)
L4 CNL .0000 .4942 1.6662 .5956 .0000 .5004 1.5861 .5683

NL -.5239 .5517 2.1143 .5943 -.2725 .5338 1.8194 .5676
(.1680) (.0161) (.1453) (.0004) (.0772) (.0088) (.0670) (.0002)

ML .0000 .4940 1.6622 .5947 .0000 .5000 1.5826 .5677
– (.0047) (.0157) – – (.0030) (.0095) –
k k

L1 5.0577 .6174 4.6512 .5893
NL (.4662) (.0304) (.4410) (.0322)

4.0997 .5459 3.8252 .5218
ML (.6744) (.0571) (.6300) (.0574)

a d b a d b
L5 CNL .9595 1.0000 .3604 .5976 .9294 1.0000 .3740 .5698

NL .9766 1.0149 .3685 .5969 .9314 1.0018 .3750 .5698
(.0204) (.0152) (.0102) (.0012) (.0149) (.0114) (.0079) (.0009)

CML .9554 .9974 .3610 .5956 .9178 .9897 .3703 .5689
f We use income data from the World Bank Poverty and Equity Database
(http://data.worldbank.org/data-catalog/poverty-and-equity-database). The variables include
income share held by lowest 10%, lowest 20%, second 20%, third 20%, fourth 20%, highest 20%,
and highest 10%. ‘ML’: maximum likelihood. ‘NL’: non-linear least squares. ‘CML’ : constrained
maximum likelihood. ‘CNL’: constrained non-linear least squares. We report constrained estimates
only when they differ from the unconstrained estimates. ‘–’ represents estimates we are unable to
obtain.
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Table 5: World Bank estimates of Gini coefficientsg

1987 1992 1995 2000 2001 2005
WB Brazilh 0.5969 0.5317 0.5957 0.5933 0.5665
Our Brazili 0.5979 0.5327 0.5976 0.5956 0.5683
WB Sweden 0.2371 0.2542 0.2554 0.2748 0.2608
Our Sweden 0.2365 0.2539 0.2549 0.2741 0.2603

g We use income data from the World Bank Poverty and Equity Database
(http://data.worldbank.org/data-catalog/poverty-and-equity-database). The
variables include income share held by lowest 10%, lowest 20%, second
20%, third 20%, fourth 20%, highest 20%, and highest 10%. World Bank
Gini coefficients are from Povcalnet, an online tool for poverty measure-
ment developed by the Development Research Group of the World Bank
(http://iresearch.worldbank.org/PovcalNet, World Bank (2015a)).
h For the above year-country combinations Povcalnet utilizes income-based data
in the format of household level (‘unit record’) data.
i Calculated as the median of implied Gini coefficients for unconstrained and
constrained ML and NL point estimates of functions L1 to L5.
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